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Abstract

The paper states how to stabilize the periodic motions of a linear, non-positively damped system of single
degree of freedom through the use of delayed state feedback. The study indicates that the delayed state
feedback works in certain frequency ranges. For a linear undamped system of single degree of freedom, the
delayed displacement feedback is able to stabilize almost all periodic motions of the system provided that
their fundamental frequencies are higher than the natural frequency of the system, but it only works in a
series of narrower and narrower frequency bands lower than the natural frequency. The introduction of
delayed velocity feedback can remarkably enlarge the working frequency ranges of delayed displacement
feedback. However, even the delayed state feedback cannot stabilize a periodic motion if the corresponding
period is an integral multiple of the natural period of system.

The criteria of stability switches prove to be a powerful tool to analyze the stabilization problem of a
linear system. However, the stabilization of a linear undamped system of single degree of freedom with
delayed velocity feedback only is a degenerate case where the available criteria of stability switches fail to
offer any useful information. A detailed study in the paper reveals the complexity of the degenerated case,
where the stabilization conditions can be identified according to the second order derivative of the real part
of an arbitrary characteristic root.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

When a dynamic system is subject to a periodic excitation, a periodic motion may come into
being, asymptotically stable, critically stable or unstable. In engineering, it is usually required to
stabilize an unstable periodic motion or a critically stable periodic motion by using proper
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control. The stabilization problem has a fundamental importance in engineering, and hence the
stabilization of periodic motions of dynamic systems has drawn much attention over the past
decades. Since the seminal idea proposed by Ott et al. [1], many studies have been made on
directing the chaotic motion of non-linear dynamic system to an unstable motion embedded in the
strange attractor such that the chaotic motion can be utilized. Among the current techniques of
stabilization, the delayed feedback proposed by Pyragas looks very simple, but works effectively
[2]. This technique has drawn much attention and found various applications [3,4].

When any delayed feedback is introduced, even a linear system of single degree of freedom
becomes a dynamic system of infinite dimensions, and the corresponding stability analysis is much
more complicated. Hence, it is far from an easy task to stabilize the periodic motion of a linear
system through the use of delayed feedback. In a recent letter [5], Le-Ngoc discussed how to
determine the stability chart on the plane spanned by time delay and displacement feedback gain
for a linear system of single degree of freedom. Krodkiewski and Faragher tried to determine the
gains of delayed state feedback numerically and applied their approach to stabilizing the periodic
motion of helicopter rotor blades [6,7]. In practice, however, their approach may not always work.
In fact, the mechanism of delayed control has not yet been fully understood even for a linear
dynamic system of single degree of freedom. Furthermore, the current studies on the stability of
delayed dynamic systems do not reveal any concise relations that engineers may be interested in.
For example, for a linear dynamic system, the current stabilization conditions do not provide any
relations in terms of the physical parameters of the system.

The objective of this study is to gain an insight into the stabilization problem of a linear non-
positive damping system of single degree of freedom by using delayed state feedback in order to
improve the stability of its periodic motions. The study focuses on the analytic conditions of
stabilization on the basis of theory of stability switches of delayed dynamic systems [8,9], and
gives some concise conditions for the stabilization. The peculiarity of the study is that all the
stabilization conditions are given in terms of the physical parameters of the system.

2. A stabilization problem of delayed state feedback

The study begins with a linear non-positive damping system of single degree of freedom subject
to the excitation of period T as follows:

m .xðtÞ þ c ’xðtÞ þ kxðtÞ ¼ f ðtÞ; f ðtÞ ¼ f ðt þ TÞ; T > 0; ð1Þ

where m > 0; k > 0 and cp0: As well known from the theory of linear vibration, the motion xðtÞ of
the system includes two parts. One is the periodic motion %xðtÞ of period T owing to the periodic
excitation f ðtÞ: The other is a kind of non-decaying motion since cp0 holds. Thus, the periodic
motion %xðtÞ is not asymptotically stable and the motion xðtÞ of system does not settle down to the
periodic motion %xðtÞ: To improve the asymptotical stability of %xðtÞ; a state feedback with time
delay T is introduced so that Eq. (1) reads

m .xðtÞ þ c ’xðtÞ þ kxðtÞ ¼ f ðtÞ þ u½xðtÞ � xðt � TÞ� þ v½ ’xðtÞ � ’xðt � TÞ�; ð2Þ
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where u; vAR1 are feedback gains of displacement and velocity, respectively. It is obvious that the
delayed state feedback does not affect %xðtÞ; but the disturbance around %xðtÞ only. That is, the
control force appears only when the motion of system deviates from the periodic motion %xðtÞ:

The disturbance DxðtÞ near the periodic motion %xðtÞ yields a linear delay differential equation as
follows:

mD .xðtÞ þ cD ’xðtÞ þ kDxðtÞ ¼ u½DxðtÞ � Dxðt � TÞ� þ v½D ’xðtÞ � D ’xðt � TÞ�: ð3Þ

The stability of Eq. (3) is governed by the eigenvalue problem of following quasi-polynomial

Dðl;TÞ � ml2 þ ðc � vÞlþ ðk � uÞ þ ðu þ vlÞ e�lT � PðlÞ þ QðlÞ e�lT : ð4Þ

To deal with the above eigenvalue problem, let

PRðoÞ � Re PðioÞ ¼ k � u � mo2; PI ðoÞ � Im PðioÞ ¼ ðc � vÞo;

QRðoÞ � Re QðioÞ ¼ u; QI ðoÞ � Im QðioÞ ¼ vo ð5Þ

and define the following polynomial as in Refs. [8,9]:

F ðoÞ �P2
RðoÞ þ P2

I ðoÞ � Q2
RðoÞ � Q2

I ðoÞ

¼ ðk � u � mo2Þ2 þ ðc � vÞ2o2 � u2 � v2o2

¼m2o4 þ ½2mðu � kÞ þ ðc2 � 2cvÞ�o2 þ k2 � 2ku: ð6Þ

As analyzed in Refs. [8,9], the linear delay differential equation (3) does not switch its stability if
FðoÞ has no real roots. That is, the periodic motion %xðtÞ is not asymptotically stable for any period
T : The key to stabilize the periodic motion %xðtÞ is to properly design the feedback gains u; vAR1

such that F ðoÞ has at least one simple positive root and the linear delay differential equation (3)
gains stability through stability switches [8,9] with variation of the time delay.

For simplicity in mathematics, this study focuses on the case when c ¼ 0: In general, the study
in the case of co0 involves no surmounting difficulty by nature. In the case of c ¼ 0; the periodic
motion %xðtÞ of uncontrolled system is critically stable, and the polynomial FðoÞ becomes

F ðoÞ ¼ m2o4 þ 2mðu � kÞo2 þ k2 � 2ku: ð7Þ

It has two positive real roots o1;2 as follows:

o2
1;2 ¼

1

2m2
½2mðk � uÞ7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2ðu � kÞ2 � 4m2ðk2 � 2kuÞ

q
� ¼

1

m
ðk � u7jujÞ; ð8Þ

namely,

o2
1 ¼

k � 2u

m
; o2

2 ¼
k

m
; uo0;

o2
1 ¼ o2

2 ¼
k

m
; u ¼ 0;

o2
1 ¼

k

m
; o2

2 ¼
k � 2u

m
; 0ouo

k

2
: ð9Þ

Because these roots are independent of the velocity feedback gain, the following sections deal with
the systems with delayed displacement feedback first, and then with those equipped with delayed
state feedback and with delayed velocity feedback only, respectively.
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3. Delayed displacement feedback

3.1. Negative feedback of delayed displacement (uo0; v ¼ 0)

Given the two positive real roots o1;2 of FðoÞ; as shown in Refs. [8,9], Eq. (3) has following two
sets of critical time delays determined from Eq. (4):

t1;2r ¼
y1;2 þ 2rp

o1;2
; r ¼ 0; 1; 2;y; ð10Þ

where

sin y1;2 ¼ 0; cos y1;2 ¼
mo2

1;2 þ u � k

u
: ð11Þ

Substituting o2
1;2 in Eq. (9) when uo0 into Eq. (11) gives y1 ¼ p and y2 ¼ 0 such that

t1r ¼ ð2r þ 1Þp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

k � 2u

r
; t2r ¼ 2rp

ffiffiffiffi
m

k

r
; r ¼ 0; 1; 2;y : ð12Þ

Noting

F 0ðoÞ ¼ 4moðmo2 þ u � kÞ; ð13Þ

one arrives at

F 0ðo1Þ ¼ �4mo1 u > 0; F 0ðo2Þ ¼ 4mo2uo0: ð14Þ

These two inequalities imply that a pair of roots of Dðl;TÞ is crossing the imaginary axis from the
left complex plane to the right complex plane with an increase of time delay T around t1r; whereas
a pair of roots of Dðl;TÞ comes into the left complex plane from the right complex plane with an
increase of time delay T around t2r: Because the periodic motion of system without the time delay
is critically stable since c ¼ 0; i.e., Dðl; 0Þ has a pair of pure imaginary roots, it is easy to see that
the pure imaginary roots become the roots with negative real parts when TAð0; t10Þ so that the
periodic motion of system is asymptotically stable. Eq. (12) indicates that the relation t1rþ1 �
t1rot2rþ1 � t2r holds. Therefore, Dðl;TÞ must have the roots with positive real parts with an
increase of time delay T such that the periodic motion of system becomes unstable at last.

It is obvious that the choice of displacement feedback gain u enables one to reach different
rankings of t1r and t2r; and to adjust the distribution of roots of Dðl;TÞ as well. To demonstrate
this fact, two examples are discussed as following.

The first example is the case when u ¼ �3k=2; which leads to the following two sets of critical
time delays:

t10 ¼
p
2

ffiffiffiffi
m

k

r
; t11 ¼

3p
2

ffiffiffiffi
m

k

r
; t12 ¼

5p
2

ffiffiffiffi
m

k

r
; t13 ¼

7p
2

ffiffiffiffi
m

k

r
;y;

t20 ¼ 0; t21 ¼ 2p

ffiffiffiffi
m

k

r
; t22 ¼ 4p

ffiffiffiffi
m

k

r
; t23 ¼ 6p

ffiffiffiffi
m

k

r
;y : ð15Þ

These time delays can be ranked as

0 ¼ t20ot10ot11ot21ot12? : ð16Þ
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According to Eqs. (14) and (16), it is easy to find that when TAð0; t10Þ; Eq. (4) has a single
pair of roots with negative real parts so that the periodic motion of system is asymptotically
stable. When T is passing through t10; a pair of roots with positive real parts emerges because
F 0ðo1Þ > 0 holds. Hence, Eq. (4) has a pair of roots with positive real parts for all TAðt10; t11Þ:
When T is passing through t11; Eq. (4) gains the second pair of roots with positive real parts when
TAðt11; t21Þ: When T is passing through each value of the critical time delays, the system either
reduces or increases a pair of roots with positive real parts, but the number of reduced pairs is less
than that of added pairs. As a result, the periodic motion of system is unstable if TAðt10;þNÞ:
Fig. 1 shows two numerical studies of asymptotically stable motion and unstable motion,
respectively.

In the second example, u ¼ �k=2 gives rise to two sets of critical time delays

t10 ¼
pffiffiffi
2

p
ffiffiffiffi
m

k

r
; t11 ¼

3pffiffiffi
2

p
ffiffiffiffi
m

k

r
; t12 ¼

5pffiffiffi
2

p
ffiffiffiffi
m

k

r
; t13 ¼

7pffiffiffi
2

p
ffiffiffiffi
m

k

r
;y;

t20 ¼ 0; t21 ¼ 2p

ffiffiffiffi
m

k

r
; t22 ¼ 4p

ffiffiffiffi
m

k

r
; t23 ¼ 6p

ffiffiffiffi
m

k

r
;y : ð17Þ

The following ranking

0 ¼ t20ot10ot21ot11ot12ot22? ð18Þ

indicates that the periodic motion of system is asymptotically stable (see Figs. 2a and c) when
TAð0; t10Þ and TAðt21; t11Þ; and that it is unstable (see Figs. 2b and d) if TAðt10; t21Þ and
TAðt11;þNÞ:

Eq. (12) implies that the larger the displacement feedback gain u; the wider the interval ð0; t10Þ;
where the periodic motion is asymptotically stable. The upper limit of the right endpoint of this

interval is maxðt10Þ ¼ limu-0� p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=ðk � 2uÞ

p
¼ p

ffiffiffiffiffiffiffiffiffi
m=k

p
: Thus, the real parts of a pair of roots of

Dðl;TÞ will approach to zero when u-0� provided that TAð0; p
ffiffiffiffiffiffiffiffiffi
m=k

p
Þ holds.
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Fig. 1. The velocity variation of a periodic motion under delayed displacement feedback subject to an initial

disturbance D ’xð0Þ ¼ 0:1 m=s when
ffiffiffiffiffiffiffiffiffi
m=k
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¼ 1:0 s; u ¼ �1:5 N=m: (a) T ¼ 1:5 sAð0; t10ÞEð0; 1:571Þ and (b) T ¼

1:6 sAðt10; t11ÞEð1:571; 4:712Þ:
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3.2. Positive feedback of delayed displacement (0ouok=2; v ¼ 0)

In this case, the roots o1;2 in Eq. (9) lead to the following two critical time delays:

t1r ¼ 2rp

ffiffiffiffi
m

k

r
; t2r ¼ ð2r þ 1Þp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

k � 2u

r
; r ¼ 0; 1; 2;y : ð19Þ

Eq. (13) gives

F 0ðo1Þ ¼ 4mo1u > 0; F 0ðo2Þ ¼ �4mo2uo0: ð20Þ

A pair of roots of Dðl;TÞ comes into the right complex plane from the left complex plane
with an increase of time delay T around t1r; while a pair of roots of Dðl;TÞ comes into the left
complex plane from the right complex plane with an increase of time delay T around t2r:
Especially for TAð0; t20Þ; Dðl;TÞ gains a pair of roots with positive real parts such that the
periodic motion of system is unstable. When T ¼ t20; this pair of roots comes back to the
left complex plane so that the periodic motion becomes asymptotically stable again. Eq. (19)
indicates the relation t1rþ1 � t1rot2rþ1 � t2r: Hence, Dðl;TÞ must have the roots with positive
real parts with an increase of time delay T : That is, the periodic motion of system looses the
stability at last.
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Fig. 2. The velocity variation of a periodic motion under delayed displacement feedback subject to an initial

disturbance D ’xð0Þ ¼ 0:1 m=s when
ffiffiffiffiffiffiffiffiffi
m=k

p
¼ 1:0 s; u ¼ �0:5 N=m: (a) T ¼ 1:5 sAð0; t10ÞEð0; 2:221Þ; (b) T ¼

2:5 sAðt10; t21ÞEð2:221; 6:283Þ; (c) T ¼ 6:4 sAðt21; t11ÞEð6:283; 6:664Þ and (d) T ¼ 7:0 sAðt11; t12ÞEð6:664; 11:11Þ:

H.Y. Hu / Journal of Sound and Vibration 275 (2004) 1009–10251014



An example of positive feedback of delayed displacement is u ¼ k=4; which leads to the two sets
of critical time delays

t10 ¼ 0; t11 ¼ 2p

ffiffiffiffi
m

k

r
; t12 ¼ 4p

ffiffiffiffi
m

k

r
; t13 ¼ 6p

ffiffiffiffi
m

k

r
;y;

t20 ¼
ffiffiffi
2

p
p

ffiffiffiffi
m

k

r
; t21 ¼ 3

ffiffiffi
2

p
p

ffiffiffiffi
m

k

r
; t22 ¼ 5

ffiffiffi
2

p
p

ffiffiffiffi
m

k

r
; t23 ¼ 7

ffiffiffi
2

p
p

ffiffiffiffi
m

k

r
;y ð21Þ

and the following ranking

0 ¼ t10ot20ot11ot12ot21o? : ð22Þ

As a result, the periodic motion of system is asymptotically stable when TAðt20; t11Þ; and it is
unstable when TAð0; t20Þ or TAðt11;þNÞ:

Eq. (19) shows that the smaller the displacement feedback gain u; the wider the interval ðt20; t11Þ;
where the periodic motion is asymptotically stable. The lower limit of the left endpoint of this
interval yields minðt20Þ ¼ limu-0þ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=ðk � 2uÞ

p
¼ p

ffiffiffiffiffiffiffiffiffi
m=k

p
: Hence, the negative real parts of a

pair of roots of Dðl;TÞ will approach to zero when u-0þ if TAðp
ffiffiffiffiffiffiffiffiffi
m=k

p
; 2p

ffiffiffiffiffiffiffiffiffi
m=k

p
Þ: Similarly, the

positive real parts of a pair of roots of Dðl;TÞ will approach to zero when u-0þ if TAð0;p
ffiffiffiffiffiffiffiffiffi
m=k

p
Þ:

3.3. Discussions

As analyzed above, the periodic motion of system with uo0 is asymptotically stable when

TAð0; p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=ðk � 2uÞ

p
: The upper limit of the right endpoint of this interval reads p

ffiffiffiffiffiffiffiffiffi
m=k

p
: For

0ouok=2; the periodic motion of system is asymptotically stable if TAðp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=ðk � 2uÞ

p
; 2p

ffiffiffiffiffiffiffiffiffi
m=k

p
Þ:

The lower limit of the left endpoint of this interval is p
ffiffiffiffiffiffiffiffiffi
m=k

p
: These two facts imply that it is possible

to choose proper feedback gain u of delayed displacement to improve the stability of the periodic

motion of system when TAð0; 2p
ffiffiffiffiffiffiffiffiffi
m=k

p
Þ except for the case when T ¼ p

ffiffiffiffiffiffiffiffiffi
m=k

p
: In terms of

frequency, the natural frequency of system (1) is fn ¼ ð2pÞ�1
ffiffiffiffiffiffiffiffiffi
k=m

p
and the fundamental frequency fb

of a periodic motion is the reciprocal of the period T ; namely, fb ¼ 1=T : It is quite straightforward to
conclude that the delayed displacement feedback is able to stabilize almost all periodic motions,
except for the periodic motion with the fundamental frequency fb ¼ 2fn; provided that their
fundamental frequencies are higher than the natural frequency of system.

The analysis in Section 3.1 also enables one to stabilize the periodic motion in some frequency
bands lower than the natural frequency through proper choice of negative feedback of delayed
displacement if T > 2p

ffiffiffiffiffiffiffiffiffi
m=k

p
: To demonstrate this fact, one can substitute u ¼ �ek; 0oe51 into

Eq. (12) and obtains

t1r ¼ ð2r þ 1Þp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m

k þ 2ek

r
¼

ð2r þ 1Þpffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2e

p
ffiffiffiffi
m

k

r
; t2r ¼ 2rp

ffiffiffiffi
m

k

r
; r ¼ 0; 1; 2;y : ð23Þ

The ranking of t1r and t2r enables one to see that the periodic motion is asymptotically stable
when TAðt2r; t1rÞ as long as ro1=ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2e

p
� 2Þ holds. For example, e ¼ 0:1 gives a bound

ro5:239: That is, the periodic motion of system is asymptotically stable when TAðt2r; t1rÞ;
r ¼ 0; 1; 2; 3; 4; 5: Fig. 3 illustrates an asymptotically stable case and an unstable case, respectively.
In those case studies, the absolute value of the displacement feedback gain is very small so that the
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disturbance decays or diverges quite slow. That is, the frequency range can only be enlarged at the
cost of decreasing the effect of stabilization.

To intuitively show the relation between the period T of a periodic motion and the
displacement feedback gain u; it is possible to plot the stability chart as shown in Fig. 4 according
to Eqs. (12), (14), (19) and (20). The number in each small region in Fig. 4 represents the pair
number of roots of Dðl;TÞ; which have positive real parts. In the regions marked by 0, the
periodic motion of system can be stabilized. Fig. 4 indicates again that the delayed displacement
feedback is able to stabilize almost all periodic motions if their periods satisfy Tarp

ffiffiffiffiffiffiffiffiffi
m=k

p
;

r ¼ 0; 1; 2;y .
Furthermore, Fig. 4 shows that a periodic motion undergoes a number of stability switches with

an increase of its period T if the absolute value of displacement feedback gain is relatively small.
For uo0; Eq. (12) gives t20ot10: The periodic motion of system undergoes 2r þ 1 stability
switches when t2rot1rot1rþ1ot2rþ1 holds with an increase of r: Substituting Eq. (12) into the
conditions t2rot1r and t1rþ1ot2rþ1 yields

�
ð4r þ 1Þk

8r2
ouo�

ð4r þ 5Þk

8ðr þ 1Þ2
; r ¼ 0; 1; 2;y; ð24Þ
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which enables the periodic motion of system to undergo 2r þ 1 stability switches. Similarly,
Eq. (19) gives t10ot20 when u > 0: With an increase of r; the periodic motion of system undergoes
2ðr þ 1Þ stability switches when t1rot2rot1rþ1ot1rþ2ot2rþ1 holds true. The substitution of
Eq. (19) into the conditions t2rot1rþ1 and t1rþ2ot2rþ1 leads to

4r þ 7

8ðr þ 2Þ2
kouo

4r þ 3

8ðr þ 1Þ2
k; r ¼ 0; 1; 2; 3;y : ð25Þ

Under this condition, the periodic motion of system undergoes 2ðr þ 1Þ stability switches.
Obviously, no stability switch occurs if u > 3k=8 holds. That is, the delayed displacement feedback
in this case is unable to stabilize any periodic motions.

Given the period T of a periodic motion, the above analysis, with help of those regions marked
by 0 in Fig. 4, enables one to choose a proper feedback gain u of delayed displacement to stabilize
the periodic motion.

4. Delayed state feedback ðuva0Þ

This section deals with the case when combined feedbacks of delayed displacement and delayed
velocity are introduced. If va0; y1;2 in Eq. (10) yields [8,9]

sin y1;2 ¼
vo1;2ðmo2

1;2 � kÞ

u2 þ v2o2
1;2

; cos y1;2 ¼
uðmo2

1;2 � k þ uÞ þ v2o2
1;2

u2 þ v2o2
1;2

: ð26Þ

Substituting o2
1;2 in Eq. (9) into Eq. (26) gives

y1 ¼ y; y2 ¼ 0; uo0; y1 ¼ y2 ¼ 0; u ¼ 0; y1 ¼ 0; y2 ¼ y; 0ouo
k

2
; ð27Þ

where y yields

sin y ¼ �
2uv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðk � 2uÞ

p
mu2 þ v2ðk � 2uÞ

; cos y ¼
v2ðk � 2uÞ � mu2

mu2 þ v2ðk � 2uÞ
: ð28Þ

Let y be a function of state feedback gains ðu; vÞ and denote it by yðu; vÞ: It is easy to derive the
partial derivatives of yðu; vÞ from Eq. (28)

@y
@u

¼ �
4uv2mðk � uÞ

uv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðk � 2uÞ

p
½mu2 þ v2ðk � 2uÞ�

;
@y
@v

¼
4u2v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðk � 2uÞ

p
uv½mu2 þ v2ðk � 2uÞ�

: ð29Þ

For uo0; Eq. (29) indicates that yðu; vÞ is monotonically decreasing with respect to v:
Hence, yðu; vÞ yields limv-�N yðu; vÞ ¼ 2p; yðu;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mu2=ðk � 2uÞ

p
Þ ¼ 3p=2; yðu; 0Þ ¼ p;

yðu;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mu2=ðk � 2uÞ

p
Þ ¼ p=2 and limv-þN yðu; vÞ ¼ 0: Obviously, the range of yðu; vÞ with a

variation of v enables one to enlarge the working range of delayed displacement feedback. For
instance, in the case of T ¼ p

ffiffiffiffiffiffiffiffiffi
m=k

p
when the delayed displacement feedback does not work,

Eq. (10) gives two sets of critical time delays

t1r ¼ ðyþ 2rpÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

k � 2u

r
; t2r ¼ 2rp

ffiffiffiffi
m

k

r
; r ¼ 0; 1; 2;y : ð30Þ

From Eqs. (30) and (14), it is possible to choose �k5uo0 and vo0 such that
p

ffiffiffiffiffiffiffiffiffi
m=k

p
Aðt20; t10Þ ¼ ð0; y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=ðk � 2uÞ

p
Þ holds and the periodic motion of system is asymptotically
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stable. Fig. 5a demonstrates the case when u ¼ �k=8 and v ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mu2=ðk � 2uÞ

p
; which result in

t10 ¼ ð3p=
ffiffiffi
5

p
Þ

ffiffiffiffiffiffiffiffiffi
m=k

p
> p

ffiffiffiffiffiffiffiffiffi
m=k

p
:

For 0ouok=2; Eq. (29) shows that yðu; vÞ is monotonically increasing with respect to v:
Thus, yðu; vÞ yields limv-�N yðu; vÞ ¼ 0; yðu;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mu2=ðk � 2uÞ

p
Þ ¼ p=2; yðu; 0Þ ¼ p;

yðu;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mu2=ðk � 2uÞ

p
Þ ¼ 3p=2 and limv-þN yðu; vÞ ¼ 2p: According to the following two sets of

critical time delays given by Eq. (10):

t1r ¼ 2rp

ffiffiffiffi
m

k

r
; t2r ¼ ðyþ 2rpÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

k � 2u

r
; r ¼ 0; 1; 2;y ð31Þ

and Eq. (20), one can choose 0ou5k=2 and vo0 such that p
ffiffiffiffiffiffiffiffiffi
m=k

p
Aðt20; t11Þ ¼

ðy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=ðk � 2uÞ

p
; 2p

ffiffiffiffiffiffiffiffiffi
m=k

p
Þ holds true and the periodic motion of system is asymptotically stable.

Fig. 5b shows the case when u ¼ k=8 and v ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mu2=ðk � 2uÞ

p
; which give t20 ¼

ðp=
ffiffiffi
3

p
Þ

ffiffiffiffiffiffiffiffiffi
m=k

p
op

ffiffiffiffiffiffiffiffiffi
m=k

p
:

Given the velocity feedback gain v; one can first obtain the relation between yðu; vÞ and u from
Eqs. (28) and(29), and then substitute it into Eqs. (30) and(31) to derive the relation between t1r

and u; and the relation between t2r and u: Plotting the curves of t1r and t2r with respect to u in
Fig. 6, one determines the number of roots of Dðl;TÞ with positive real parts in each small region,
and finally obtains the stability charts for different combinations of state feedback gains. Like Fig.
4, the number in each small region in Fig. 6 represents the pair number of roots with positive real
parts. In the regions marked by 0, the periodic motion of system can be stabilized. The
comparison between Figs. 4 and 6 indicates that the addition of delayed velocity feedback
remarkably enlarges the stability regions. For a strong delayed velocity feedback, it is possible to
stabilize any periodic motion if its period yields Ta2rp

ffiffiffiffiffiffiffiffiffi
m=k

p
; r ¼ 0; 1; 2;y no matter whether

the delayed displacement feedback is positive or negative.

5. Delayed velocity feedback (u ¼ 0; va0)

Eq. (9) shows that FðoÞ has two repeated roots o1 ¼ o2 ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
when u ¼ 0: Meanwhile,

Eq. (13) gives F 0ðo1;2Þ ¼ 0 in this case. Hence, the system with delayed velocity feedback only is a
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degenerated case where the method in Refs. [8,9] fails to analyze the stability switches of Eq. (3).
For this reason, a direct analysis will be made in this section for the relation between the feedback
gain v of delayed velocity and the stabilization condition ao0; with l ¼ aþ io being an arbitrary
characteristic root of Eq. (4).

ARTICLE IN PRESS

Fig. 6. Stability charts of periodic motions under delayed state feedback when p
ffiffiffiffiffiffiffiffiffi
m=k

p
¼ 1:0 s: (a) v ¼ �0:01;

(b) v ¼ �0:1; (c) v ¼ �1:0; (d) v ¼ 0:01; (e) v ¼ 0:1 and (f) v ¼ 1:0:
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Substituting c ¼ 0; u ¼ 0 and l ¼ aþ io into Eq. (4) yields

Dðaþ io;TÞ ¼ mðaþ ioÞ2 þ k þ vðaþ ioÞ½e�ðaþioÞT � 1� ¼ 0; ð32Þ

where one obtains corresponding real and imaginary parts:

mða2 � o2Þ þ k � vaþ vae�aT cosoT þ voe�aT sinoT ¼ 0;

2mao� voþ voe�aT cosoT � vae�aT sinoT ¼ 0: ð33Þ

Solving Eq. (33) for e�aTcosoT and e�aTsinoT ; one has

e�aT cosoT ¼ �
ðma� vÞða2 þ o2Þ þ ka

vða2 þ o2Þ
;

e�aT sinoT ¼
o½mða2 þ o2Þ � k�

vða2 þ o2Þ
: ð34Þ

For the critical time delays T ¼ tr � 2rp
ffiffiffiffiffiffiffiffiffi
m=k

p
; r ¼ 0; 1; 2;y; which are determined from

Eqs. (27) and (30), and an arbitrary feedback gain v of delayed velocity, it is easy to verify that
ða;oÞ ¼ ð0;7

ffiffiffiffiffiffiffiffiffi
k=m

p
Þ are two roots of Eq. (34). That is, Eq. (32) always has a pair of pure

imaginary roots in this case. This fact, which coincides with Eq. (9), indicates again that the
delayed velocity feedback is unable to stabilize any periodic motion if the period satisfies T ¼
tr ¼ 2rp

ffiffiffiffiffiffiffiffiffi
m=k

p
; r ¼ 0; 1; 2y .

For Tatr ¼ 2rp
ffiffiffiffiffiffiffiffiffi
m=k

p
; r ¼ 0; 1; 2;y; the possibility of stabilization is analyzed as follows.

Eq. (34) can be recast, with help of triangle relations, into

G1ða;oÞ � v2ða2 þ o2Þ2e�2aT � f½ðma� vÞða2 þ o2Þ þ ka�2 þ o2½mða2 þ o2Þ � k�2g ¼ 0;

G2ða;oÞ � tanoT �
o½k � mða2 þ o2Þ�

ðma� vÞða2 þ o2Þ þ ka
¼ 0: ð35Þ

Furthermore, G1ða;oÞ ¼ 0 can be rewritten as

e�2aT ¼ 1þ
a2 � 2a1av

ða2 þ o2Þv2
; ð36Þ

where

a1 � mða2 þ o2Þ þ k > 0;

a2 � ma2ðma2 þ 2mo2 þ 2kÞ þ ðk � mo2Þ2X0: ð37Þ

Eqs. (36) and (37) result in the fact that ao0 holds if vo0: Otherwise, if for any v�o0 there is an
a�X0 such that Eq. (36) holds, then either T ¼ tr ¼ 2rp

ffiffiffiffiffiffiffiffiffi
m=k

p
holds for some integer r if a� ¼ 0;

or e�2a�To1 and 1þ ða2 � 2a1a�v�Þ=½ða�Þ2 þ o2�ðv�Þ2 > 1 for a� > 0: These two cases contradict
either Tatr ¼ 2rp

ffiffiffiffiffiffiffiffiffi
m=k

p
; r ¼ 0; 1; 2;y or v�o0 and Eq. (37). The above analysis indicates that

the stabilization condition ao0 holds for an arbitrary root of Eq. (32) when the negative feedback
vo0 of delayed velocity is put into use. However, either a > 0 or ao0 may be true when v > 0: To
illustrate these results, the root ða;oÞ of G1ða;oÞ ¼ 0 on the complex plane is shown in Fig. 7 for 6
typical cases.

In what follows, a further analysis needs to be made for the case when v > 0: The analysis begins
from the special case when the period T is extremely short. As proved in Ref. [8], jaj should be a
very small quantity in this case since two roots of Eq. (32) are just slightly perturbed from the pure
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imaginary roots ða;oÞ ¼ ð0;7
ffiffiffiffiffiffiffiffiffi
k=m

p
Þ: This fact gives rise to e�2aTE1; and 2a1avEa0 follows.

Consequently, sgn v ¼ sgn a holds. Hence, the stabilization condition ao0 fails to hold for any
root of Eq. (32) if v > 0 and T is very short. When T increases, the periodic motion keeps unstable
provided that T varies in ð0; t1Þ; and it may undergo a stability switch only when T is passing
through a critical time delay tr ¼ 2rp

ffiffiffiffiffiffiffiffiffi
m=k

p
; r ¼ 1; 2;y :

To examine the case when T is passing through a critical time delay tr ¼ 2rp
ffiffiffiffiffiffiffiffiffi
m=k

p
; r ¼ 1; 2;y;

let the roots of Eq. (32) be the functions in period T and denote them by liðTÞ; i ¼ 1; 2;y: Then,
there exists at least one root ljðTÞ of Eq. (32) such that Re ljðtrÞ ¼ 0 holds. Moreover,
straightforward computation from Eq. (32) gives

dðRe ljÞ
dT

����
ðo;TÞ¼ð

ffiffiffiffiffiffiffi
k=m

p
;trÞ
¼ 0; 2m � vtr ¼ 2ðm � rpv

ffiffiffiffiffiffiffiffiffi
m=k

p
Þa0; r ¼ 1; 2;y ð38Þ

and

d2ðRe ljÞ
dT2

����
ðo;TÞ¼ð

ffiffiffiffiffiffiffi
k=m

p
;trÞ
¼

4mkv

ð2m � vtrÞ
3
¼

mkv

2ðm � rpv
ffiffiffiffiffiffiffiffiffi
m=k

p
Þ3
; r ¼ 1; 2;y: ð39Þ
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Fig. 7. Root ða;oÞ of G1ða;oÞ ¼ 0 on the complex plane for 6 typical values of v when
ffiffiffiffiffiffiffiffiffi
m=k

p
¼ 1:0 s;

c ¼ 0; u ¼ 0; T ¼ t1E6:284 s: (a) v ¼ �0:2; (b) v ¼ �0:1; (c) v ¼ �0:08; (d) v ¼ 0:2; (e) v ¼ 0:3182E2m=T ;
and (f) v ¼ 0:4:
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If jT � trj is very small, the following Taylor approximation for Re ljðTÞ holds

Re ljðTÞE
4mkv

ð2m � vtrÞ
3
ðT � trÞ

2; r ¼ 1; 2;y; ð40Þ

provided that tra2m=v: Assume that tr��1o2m=votr� : Then at the neighborhood of the critical
time delay tr; r ¼ 0; 1;y; r� � 1; the branch of characteristic root ljðTÞ given by Eq. (40) satisfies
Re ljðTÞX0: Hence, the branch of Re ljðTÞ comes from the right half-complex plane when T
approaches any critical time delay tr for rpr� � 1; grazes the imaginary axis when T ¼ tr; and
returns to the right half-complex plane again when T leaves tr: This case is demonstrated in Fig. 8
for three typical time delays near t1 ¼ p: On the other hand, at the neighborhood of a critical time
delay tr for rXr�; the branch of characteristic root ljðTÞ always satisfies Re ljðTÞp0: As shown in
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Fig. 8. Distribution of roots l ¼ aþ io; i.e., the intersections of thin curve G1ða;oÞ ¼ 0 and thick curve G2ða;oÞ ¼ 0;
near ð0;

ffiffiffiffiffiffiffiffiffi
k=m

p
Þ on the complex plane with a variation of period T around t1E6:284 s; whenffiffiffiffiffiffiffiffiffi

m=k
p

¼ 1:0 s; c ¼ 0; u ¼ 0; v ¼ 0:2 N s=mo2m =t1: (a) T ¼ 6:0 s; (b) T ¼ t1E6:284 s and (c) T ¼ 6:6 s:

Fig. 9. Distribution of roots l ¼ aþ io; i.e., the intersections of thin curve G1ða;oÞ ¼ 0 and thick curve G2ða;oÞ ¼ 0;
near ð0;

ffiffiffiffiffiffiffiffiffi
k=m

p
Þ on the complex plane with a variation of period T around t1E6:284 s; whenffiffiffiffiffiffiffiffiffi

m=k
p

¼ 1:0 s; c ¼ 0; u ¼ 0; v ¼ 0:4 N s=m > 2m =t1: (a) T ¼ 6:0 s; (b) T ¼ t1E6:284 s and (c) T ¼ 6:6 s:
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Fig. 9, the branch of Re ljðTÞ in this case grazes the imaginary axis from the left half-complex
plane when T is passing through tr: As a result, if tra2m=v holds for all r ¼ 1; 2;y; the number
of characteristic roots, of Eq. (32), with positive parts does not change with an increase of
period T from zero to the positive infinity. Therefore, if the positive feedback gain v is chosen
not to be 2m=tr for any r ¼ 1; 2;y; then the periodic motion with period Tatr is always
unstable.

Now, the final attention is paid to the case when v is chosen to be 2m=tr for a specific critical
time delay tr; denoted by tc: In this case, dðRe ljÞ=dT and d2ðRe ljÞ=dT2 do not exist at the critical
time delay. The singularity of dðRe ljÞ=dT and d2ðRe ljÞ=dT2 implies the occurrence of a local
bifurcation of ljðTÞ or G1ðaj;ojÞ ¼ 0 with respect to T or v as shown in Fig. 7e. The roots of

Eq. (32) near ða;oÞ ¼ ð0;
ffiffiffiffiffiffiffiffiffi
k=m

p
Þ are shown on the complex plane in Fig. 10 with the variation of

period T near tc; where tc ¼ 2m=v ¼ p: Obviously, Eq. (32) has two repeated roots li ¼ lj ¼
i

ffiffiffiffiffiffiffiffiffi
k=m

p
on the imaginary axis when T ¼ tc ¼ p in Fig. 10b. When the period T deviates from tc;

one of the roots of Eq. (32) leaves the axis for the left half-plane, and the other for the right half-
plane, as shown in Figs. 10a and c. In other words, two solution branches of Eq. (32) are getting
closer and closer from the left half-plane and the right half-plane, respectively, when the period T

approaches to tc; and collide each other at ða;oÞ ¼ ð0;
ffiffiffiffiffiffiffiffiffi
k=m

p
Þ when T ¼ tc:

In summary, the negative feedback of delayed velocity is able to stabilize the periodic motion
provided that the period yields Tatr ¼ 2rp

ffiffiffiffiffiffiffiffiffi
m=k

p
; r ¼ 0; 1; 2;y; while the positive feedback of

delayed velocity fails to stabilize any periodic motions.
To demonstrate the above analysis, Fig. 11 gives two case studies, one is asymptotically

stable and the other is unstable. Fig. 12 demonstrates the control effect when the periods of
periodic motions are relatively long. In Fig. 12a, the period is not any integral multiple of
natural period of system so that the periodic motion is stabilized. In Fig. 12b, however,
the period is 4 times of 2p; the natural period of system. Hence, the delayed velocity feed-
back can only keep the critical stability of periodic motion, and fails to stabilize the periodic motion.
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Fig. 10. Distribution of roots l ¼ aþ io; i.e., the intersections of thin curve G1ða;oÞ ¼ 0 and thick curve G2ða;oÞ ¼ 0;
near ð0;

ffiffiffiffiffiffiffiffiffi
k=m

p
Þ on the complex plane with a variation of period T around tc ¼ 6:284 s; whenffiffiffiffiffiffiffiffiffi

m=k
p

¼ 1:0 s; c ¼ 0; u ¼ 0; v ¼ 0:3182 N s=mE2m =tc: (a) T ¼ 6:0 s; (b) T ¼ tc ¼ 6:284 s and (c) T ¼ 6:6 s:
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6. Conclusions

The delayed state feedback is an effective technique to improve the stability of periodic motions
of a linear system with non-positive damping. The present study indicates that the working range
of this technique does not cover the whole frequency domain. For a linear undamped system of
single degree of freedom, the delayed displacement feedback can stabilize almost all periodic
motions provided that their fundamental frequencies are higher than the natural frequency of
system, but it only works in a number of narrower and narrower frequency bands lower than the
natural frequency. The introduction of delayed velocity feedback can remarkably enlarge the
working frequency ranges of delayed displacement feedback. Nevertheless, even the delayed state
feedback is not able to stabilize any periodic motion if its period is an integral multiple of the
natural period.

The criteria, based on the first order derivative of the real part of a characteristic root, of
stability switches prove to be a powerful tool to analyze the stabilization problem and to plot the
stability charts. However, the stabilization of a linear undamped system of single degree of
freedom with delayed velocity feedback only is a degenerate case where the available criteria
of stability switches fail to offer any useful information. In this case, the second order derivative of
the real part of an arbitrary characteristic root plays an important role in identifying the trend
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Fig. 12. The velocity variation of a periodic motion under delayed velocity feedback subject to an initial disturbance
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Fig. 11. The velocity variation of a periodic motion under delayed velocity feedback subject to an initial disturbance

D ’xð0Þ ¼ 0:1 m=s when
ffiffiffiffiffiffiffiffiffi
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p
¼ 1:0 s; T ¼ 3:142 s: (a) v ¼ �0:1 N s=m and (b) v ¼ 0:1 N s=m:
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of the real part of the characteristic root with respect to the system parameters, and enables one to
sort out the stabilization conditions.

Finally, Eq. (3) also describes the regenerative chatter in some processes of metal cutting and
the above conclusions are useful for the suppression of regenerative chatter.
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